

NAAC REACCREDITED "A" GRADE

Sion (West), Mumbai – 400022.

Department of Statistics

Program: B.Sc.

Syllabus for S.Y.B.Sc. Semester III & IV

(To be implemented from 2024 onwards)

Credit Based Semester and Grading System National Education Policy

SEMESTER III

THEORY MAJOR

TITLE OF COURSE	PROBABILITY DISTRIBUTIONS			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	I	UNIVARIATE RANDOM VARIABLES(DISCRETE AND CONTINUOUS)	1	
	П	STANDARD DISCRETE PROBABILITY DISTRIBUTIONS	1	3
	III	BIVARIATE PROBABILITY DISTRIBUTIONS	1	
TITLE OF COURSE		THEORY OF SAMPLE	ING	
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	I	CONCEPTS OF SAMPLING & SIMPLERANDOM SAMPLING	1	
	II	STRATIFIED SAMPLING	1	3
	III	RATIO & REGRESSION ESTIMATIONAND SAMPLING METHODS	1	3

COURSE CODE	PRACTICALS BASED ON	LECTURES/ WEEK	CREDITS
	PROBABILITY DISTRIBUTIONS	2	1
	THEORY OF SAMPLING	2	1

SEMESTER IV

THEORY MAJOR

TITLE OF COURSE	PROBABILITY AND SAMPLING DISTRIBUTIONS			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	I	STANDARD CONTINUOUS PROBABILITY DISTRIBUTIONS	1	3
	II	NORMAL DISTRIBUTION	1	
	III	EXACT SAMPLING DISTRIBUTIONS	1	
TITLE OF COURSE	ANALYSIS OF VARIANCE & DESIGN OF EXPERIMENTS			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	I	ANALYSIS OF VARIANCE	1	3
	II	DESIGN OF EXPERIMENTS	1	
	III	LATIN SQUARE DESIGN & FACTORIAL EXPERIMENTS	1	

COURSE CODE	PRACTICALS BASED ON	LECTURES/ WEEK	CREDITS
	PROBABILITY AND SAMPLING DISTRIBUTIONS	2	1
	ANALYSIS OF VARIANCE & DESIGN OF EXPERIMENTS	2	1

SYLLABUS FOR S.Y.B.Sc. UNDER NEP SEMESTER III PAPER I

- To be well versed with data collection techniques.
- To effectively use data visualization and summarization techniques to understand data.
- To understand the concepts of probability and random variable.

Course Code		
	PROBABILITY DISTRIBUTIONS	3 Credits
UNIT I: UNIV	15 Lectures	
Moment Gener	rating Function, Cumulant generating Function and Characteristic	
function-Defin	ition and properties: Effect of change of origin and scale, MGF,	
CGF and Char	acteristic function of sum of n independent random variables,	
moments from	MGF, CGF and Characteristic function. Relationship between	
moments and c	cumulants. Transformation of univariate random Variable.	
Degenerate, Un Negative Binor of truncation 0 The following Probability ma Standard deviate Additive proper	ANDARD DISCRETE PROBABILITY DISTRIBUTIONS niform, Two point, Bernoulli, Binomial, Poisson, Geometric, mial, Hypergeometric, Truncated Binomial, Truncated Poisson(point) distributions. aspects (wherever applicable) of the above distributions to be discuss as function, Cumulative distribution function, Mean, Mode and tion. Moment Generating Function, Cumulant Generating Function, erty, Recurrence relation for Central Moments, Skewness and Kurtosis, bution, Fitting of Distribution.	15 Lectures
	VARIATE PROBABILITY DISTRIBUTIONS	15 Lectures
	ty mass function for Discrete random variables, Joint Probability	
density function		
conditional Dis		
Expectation &		
Transformation	n of Random Variables and Jacobian of transformation.	

SEMESTER III: PRACTICALS BASED ON PAPER I

- 1. Moment Generating Function,
- 2. Cumulant Generating Function, Characteristic Function,
- 3. Standard Discrete Distributions.
- 4. Fitting of Standard Discrete Distributions.
- 5. Bivariate Probability Distributions.
- 6. Transformation of univariate random variables.
- 7. Transformation of bivariate continuous random variables.

- 1. Goon A.M., Gupta M.K & Dasgupta B. (2013). An Outline of Statistical Theory,
- 2. Gupta S.C.&Kapoor V.K. (2007). Fundamentals of Mathematical Statistics: Sultan Chand & Sons
- 3. Hoel P. G. (1966). *Introduction to Mathematical Statistics*, Fourth Edition: John Wiley & Sons Inc.
- 4. Hogg R. V.&CraigA.T.(2012). *Introduction to Mathematical Statistics*, Seventh Edition: CollierMcMillan Publishers.
- Hogg R. V.&Tannis E. A. (1988). Probability and Statistical Inference, Third Edition:
 CollierMcMillan Publishers.
- 6. Kapur J. N. & Saxena H. C. Mathematical Statistics, Fifteenth Edition: S. Chand & Company Ltd.
- 7. Medhi J. (2013). Statistical Methods; An Introductory Text, SecondEdition: Wiley Eastern Ltd.
- 8. Miller I., Miller M.& Freund J.E.(1999) *John E. Freund's Mathematical Statistics*, Sixth Edition: Pearson Education Inc.
- 9. MoodA. M., GraybillF.A., &BoyesD. C. (2001). *Introduction to the theory of Statistics*,
 ThirdEdition: McGraw-Hill Book Company. Vol. 1, Third Edition: The World Press Pvt. Ltd.

SYLLABUS FOR S.Y.B.Sc. UNDER NEP SEMESTER III PAPER II

- To learn different methods of data collection.
- To analyse the collected data using sampling techniques.

Course Code	Title	Credits	
	THEORY OF SAMPLING	3 Credits	
UNIT I: CON	CEPTS OF SAMPLING & SIMPLE RANDOM SAMPLING	15 Lectures	
-	pulation unit, Sample, Sample unit, Parameter, Statistic, Estimator, lness, Mean square error & Standard error.		
appropriate Qu	, Sample Survey. Steps in conducting a sample survey, Designing nestionnaire. Sampling and Non-sampling errors. NSSO, CSO and hods of Probability and Non Probability sampling.		
of Random nu & total. Expective these estimators. (Westernation & estimators.)	Definition, Sampling with & without replacement (WR/WOR). Lottery method & use of Random numbers to select Simple random sample. Estimation of population mean & total. Expectation & Variance of the estimators, Unbiased estimator of variance of these estimators. (WR/WOR). Estimation of population proportion and total. Expectation & Variance of the estimators, Unbiased estimator of variance of these estimators. (WR/WOR). Estimation of Sample size based on a desired accuracy in case of SRS for variables & attributes. (WR/WOR).		
UNIT II: STE	RATIFIED SAMPLING	15 Lectures	
Need for Strati Stratified Sam	fication of population. Definition of Stratified Sample. Advantages of pling.		
within each str	population mean & total in case of Stratified Random Sampling (WOR rata). Expectation & Variance of the unbiased estimators, Unbiased variances of these estimators.		
Proportional a Comparison of Proportional a			
Estimation of (WOR within	population proportion & total in case of Stratified Random Sampling each strata).		

UNIT III: RATIO & REGRESSION ESTIMATION AND SAMPLING METHODS	15 Lectures
Ratio Estimators for population Ratio, Mean & Total. Expectation & MSE of the Estimators. Estimators of MSE.	
Regression Estimators for population Mean & Total. Expectation & Variance of the Estimators assuming known value of regression coefficient 'b'. Estimation of 'b'.	
Resulting variance of the estimators. Comparison of Ratio, Regression & mean per unit estimators.	
Introduction to Systematic sampling, Cluster sampling & Two Stage sampling.	

SEMESTER III: PRACTICALS BASED ON PAPER II

- 1. Designing of Questionnaire.
- 2. Simple Random Sampling for Variables.
- 3. Simple Random Sampling for Attributes.
- 4. Estimation of Sample Size in Simple Random Sampling.
- 5. Stratified Random Sampling.
- 6. Ratio Estimation.
- 7. Regression Estimation.

- 1. Cochran.W.G. (1978). Sampling Techniques, Third Edition: WileyEastern Limited
- 2. Daroga Singh&F.S.Chaudhary. (1986). *Theory and Analysis of Sample Survey Design:* Wiley Eastern Ltd
- 3. Des Raj. (1968). Sampling Theory: McGraw Hill Series in Probability and Statistics.
- 4. Gupta S.C.&Kapoor V.K. (2007). Fundamentals of Mathematical Statistics: Sultan Chand& Sons
- 5. Mukhopadhyay P. (1998). Theory and Methods of Survey Sampling: Prentice Hall of India
- 6. Murthy M.N.(1967). Sampling Theory and methods: Statistical Publishing Society.
- 7. P.V. Sukhatme&B.V. Sukhatme. (1984). *Sampling Theory of Surveys with Applications*, Third Edition: Iowa State University Press.Pvt. Ltd.
- 8. Sampath S.(2005). Sampling Theory and Methods, Second Edition: Narosa PublishingHouse

SYLLABUS FOR S.Y.B.Sc. UNDER NEP SEMESTER IV PAPER I

- To study normal distribution and its applications.
- To use sampling distributions in testing equality of means, independence of attributes, goodness of fit, etc.

Course Code	Title	Credits
	PROBABILITY AND SAMPLING DISTRIBUTIONS	3 Credits
	NDARD CONTINUOUS PROBABILITY DISTRIBUTIONS	15 Lectures
	riangular with parameters (a, b, c), Exponential, Gamma (with one &	
1), Beta (Types I & II). Cauchy (with one & two parameters) The	
following aspe	cts of the above distributions (wherever applicable) to be discussed:	
Mean, Median	, Mode & Standard deviation. Moment Generating Function, Additive	
property, Cum	ulant Generating Function. Skewness and Kurtosis (without proof).	
Fitting of Distr	ibution. Interrelations between the distributions.	
UNIT II: NOI	RMAL DISTRIBUTION	15 Lectures
Mean, Median	, Mode, Standard deviation, Moment Generating function, Cumulant	
Generating fun	action, Moments & Cumulants (up to fourth order). Recurrence relation	
for central mor	ments, skewness & kurtosis, Mean absolute deviation. Distribution of	
linear function	of independent Normal variables. Fitting of Normal Distribution.	
CentralLimit tl	heorem for i.i.d. random variables. Log Normal Distribution: Mean,	
variance, distri	bution of product of independent log normal variables.	
UNIT III: EX	ACT SAMPLING DISTRIBUTIONS	15 Lectures
Standard deviated Additive proper variables. Samindependence of Applications of population, Test for goodn	stribution: Concept of degrees of freedom. Mean, Median, Mode & tion. Moment generating function, Cumulant generating function. erty, Distribution of the sum of squares of independent Standard Normal pling distributions of sample mean and sample variance and their for a sample drawn from Normal distribution (without proof). f Chi-Square: Confidence interval for the variance of a Normal st of significance for specified value of variance of a Normal population. ess of fit, Test for independence of attributes, Yates' correction.	
	Derivation of p.d.f. of t, Mean, Median, Mode & Standard deviation operties. Students's t, Applications of t: Confidence interval for: Mean of	

Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of mean of a Normal population, difference in means of two Normal populations (based on independent samples with equal variances & dependent samples).

F-distribution: Mean, Mode & Standard deviation. Distribution of Reciprocal of an F variate, Ratio of two independent Chi-squares divided by their respective degrees of freedom. Interrelationship of F with t-distribution, Chi-square distribution & Normal distribution. Applications of Confidence interval for ratio of variances of two independent Normal populations. Test for equality of variances of two independent Normal populations.

SEMESTER III: PRACTICALS BASED ON PAPER I

Standard Continuous Distributions.
 Fitting of Standard Continuous Distributions.
 Normal Distribution
 Fitting of Normal distribution, Central Limit Theorem.
 Chi Square distribution.
 t distribution.
 F distribution.

- 1. Goon A.M., Gupta M.K & Dasgupta B. (2013). An Outline of Statistical Theory,
- 2. Gupta S.C.&Kapoor V.K. (2007). Fundamentals of Mathematical Statistics: Sultan Chand & Sons
- 3. Hoel P. G. (1966). *Introduction to Mathematical Statistics*, Fourth Edition: John Wiley & Sons Inc.
- 4. Hogg R. V.&CraigA.T.(2012). *Introduction to Mathematical Statistics*, Seventh Edition: CollierMcMillan Publishers.
- Hogg R. V.&Tannis E. A. (1988). Probability and Statistical Inference, Third Edition:
 CollierMcMillan Publishers.

- 6. Kapur J. N.&SaxenaH.C. Mathematical Statistics, Fifteenth Edition: S. Chand & Company Ltd.
- 7. Medhi J. (2013). Statistical Methods; An Introductory Text, SecondEdition: Wiley Eastern Ltd.
- 8. Miller I., Miller M.& Freund J.E.(1999) *John E. Freund's Mathematical Statistics*, Sixth Edition: Pearson Education Inc.
- 9. MoodA. M., GraybillF.A., &BoyesD. C. (2001). *Introduction to the theory of Statistics*,

 ThirdEdition: McGraw-Hill Book Company. Vol. 1, Third Edition: The World Press Pvt. Ltd.

SYLLABUS FOR S.Y.B.Sc. UNDER NEP SEMESTER IV PAPER II

- To design an experiment for specified objectives.
- To evaluate the data collected using ANOVA techniques.

Course Code	Title	Credits
	ANALYSIS OF VARIANCE & DESIGN OF EXPERIMENTS	3 Credits
UNIT I: ANA	LYSIS OF VARIANCE	15 Lectures
Introduction, C	Cochran's Theorem (Statement only).	
1	ification with equal & unequal observations per class, Two-way with one observation per cell.	
Mathematical Analysis of var	Model, Assumptions, Expectation of various sum of squares, F- test, riance table.	
Least square es	stimators of the parameters, Variance of the estimators, Estimation of	
treatment contracts.	rasts, Standard Error and Confidence limits for elementary treatment	
UNIT II: DES	SIGN OF EXPERIMENTS	15 Lectures
Experiment, Experimental unit, Treatment, Yield, Block, Replicate, Experimental Error, Precision. Principles of Design of Experiments: Replication, Randomization & Local Control.		
Efficiency of d	esign D1 with respect to design D2.	
Choice of size, Completely Ra Mathematical		
F-test, Analysi		
Least square estreatment contrasts. Effic		
Missing plot te	echnique for one missing observation in case of CRD and RBD.	

UNIT III: LATIN SQUARE DESIGN& FACTORIAL EXPERIMENTS:

15 Lectures

Latin Square Design: Mathematical Model, Assumptions, Expectation of various sum of squares, F-test, Analysis of variance table, Advantages. Least square estimators of the parameters, Variance of the estimators, Estimation of treatment contrasts, Standard error and Confidence limits for elementary treatment contrasts. Efficiency of the design relative to RBD, CRD.

Missing plot technique for one missing observation in case of LSD

Factorial Experiments: Advantages. 22, 23 Experiments. Definition of Orthogonal

Contrast, Calculation of Main & Interaction Effects. Yates' method. Analysis of 2^2 & 2^3 factorial Experiments.

SEMESTER III: PRACTICALS BASED ON PAPER II

- 1. One way Analysis of Variance.
- 2. Two-way Analysis of Variance.
- 3. Completely Randomized Design.
- 4. Randomized Block Design.
- 5. Latin Square Design.
- 6. Missing Observations in CRD, RBD & LSD.
- 7. Factorial Experiments.

- 1. Cochran.W.G. (1978). Sampling Techniques, Third Edition: WileyEastern Limited
- 2. Daroga Singh&F.S.Chaudhary. (1986). *Theory and Analysis of Sample Survey Design:* Wiley Eastern Ltd
- 3. Des Raj. (1968). Sampling Theory: McGraw Hill Series in Probability and Statistics.
- 4. Gupta S.C.&Kapoor V.K. (2007). Fundamentals of Mathematical Statistics: Sultan Chand& Sons
- 5. Mukhopadhyay P. (1998). Theory and Methods of Survey Sampling: Prentice Hall of India
- 6. Murthy M.N.(1967). Sampling Theory and methods: Statistical Publishing Society.
- 7. P.V. Sukhatme&B.V. Sukhatme. (1984). *Sampling Theory of Surveys with Applications*, Third Edition: Iowa State University Press.Pvt. Ltd.
- 8. Sampath S.(2005). Sampling Theory and Methods, Second Edition: Narosa PublishingHouse

SEMESTER III THEORY MINOR

TITLE OF COURSE	OPERATIONS RESEARCH			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	I	LINEAR PROGRAMMING PROBLEM	1	
	II	TRANSPORTATION PROBLEM	1	3
	III	ASSIGNMENT PROBLEM & SEQUENCING	1	

COURSE CODE	PRACTICALS BASED ON	LECTURES/ WEEK	CREDITS
	OPERATIONS RESEARCH I	2	1

SEMESTER IV THEORY MINOR

TITLE OF COURSE	REGRESSION AND TIME SERIES			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	I	CORRELATION AND ASSOCIATION	1	
	II	REGRESSION ANALYSIS	1	3
	III	TIME SERIES	1	

COURSE CODE	PRACTICALS BASED ON	LECTURES/ WEEK	CREDITS
	REGRESSION AND TIME SERIES	2	1

SYLLABUS FOR S.Y.B.Sc. UNDER NEP SEMESTER III PAPER I

- To understand typical industry problems like transportation, assignment etc.
- To learn MS Excel to solve problems related to optimization.

Course Code	Title	Credits
	OPERATIONS RESEARCH	3 Credits
UNIT I: LINEAR PROGRAMMING PROBLEM		15 Lectures
Mathematical Formulation: Maximization & Minimization. Solution, Feasible		
Solution, Basic Feasible Solution, Optimal solution. Graphical Solution for problems		
with two variables. Simplex method of solving problems with two or more variables.		
Big M method		
L.P.P. Relation		
UNIT II: TRA	ANSPORTATION PROBLEM	15 Lectures
Mathematical Formulation, Solution, Feasible Solution. Initial Basic FeasibleSolution		
by North-West Corner Rule, Matrix Minima Method, Vogel's Approximation Method.		
Optimal Solution by MODI Method. Optimality test,Improvement procedure.		
Variants in Transportation Problem: Unbalanced, Maximization, Prohibitedroute type.		
	SIGNMENT PROBLEM & SEQUENCING	
Assignment: N	Mathematical Formulation. Solution by Complete Enumeration Method	
and Hungarian	method. Variants in Assignment Problem: Unbalanced, Maximization	
type, Restricte	d (prohibited) route.	
Travelling Salesman Problem.		
Sequencing Pr Machines.	oblem: Processing n Jobs through 2 and 3 Machines & 2 Jobsthrough m	

SEMESTER III: PRACTICALS BASED ON PAPER I

Formulation and Graphical Solution of L.P.P.
 Simplex Method.
 Duality.
 Transportation.
 Assignment.
 Sequencing.
 MS Excel Solver

- Bronson R. (1997). Schaum Series book in Operations Research. Second edition: Tata McGrawHill Publishing Company Ltd.
- 2. Kantiswaroop&Gupta M. (2010). Operations Research, Twelfth Edition: S Chand & Sons.
- 3. Sasieni M., Yaspan A.&Friedman L. (1959). Operations Research; Methods and Problems: JohnWiley & Sons.
- 4. Sharma J. K. (1989). *Mathematical Models in Operations Research*: Tata McGraw Hill PublishingCo. Ltd.
- 5. Sharma J.K. (2001). Quantitative Techniques for Managerial Decisions: MacMillan India Ltd.
- 6. Sharma S.D. *Operations Research*. Eleventh Edition: KedarNath Ram Nath& Company.
- 7. TahaH. A.(2010). Operations Research. Ninth Edition: Prentice Hall of India.
- 8. Wagner H. M. (1970). *Principles of Operations Research with Applications to ManagementDecisions*, Second Edition: Prentice Hall of India Ltd.

SYLLABUS FOR S.Y.B.Sc. UNDER NEP SEMESTER IV PAPER I

- To understand planning and evaluation of project.
- To acquire skills in strategy planning and decision making.

Course	Title	Credits
Code		
	REGRESSION AND TIME SERIES	3 Credits
UNIT I: COR Bivariate freque Bubble chart. Pr Spearman's Rar Association of a colligation.	15 Lectures	
Linear regression	RESSION ANALYSIS n. Fitting a straight line by method of least squares. Coefficient of Relation between regression coefficients and correlation coefficient.	15 Lectures
Fitting of curves method of least	reducible to linear form by transformation. Fitting a quadratic curve by squares.	
Smoothing mether Estimation of treature averages, Method	ne series and its components. Models of time series. Exponential	15 Lectures
Estimation of sea method. Ratio to	sonal component by, Method of simple averages, Ratio to moving average trend method.	

SEMESTER IV: PRACTICALS BASED ON PAPER I

1. Association	
2. Correlation	
3. Regression I	
4. Regression II	
5. Time Series I	
6. Time series II	

- 9. Bronson R. (1997). *Schaum Series book in Operations Research*. Second edition: Tata McGrawHill Publishing Company Ltd.
- 10. Kantiswaroop&Gupta M. (2010). Operations Research, Twelfth Edition: S Chand & Sons.
- Sasieni M., Yaspan A.&Friedman L. (1959). Operations Research; Methods and Problems:
 JohnWiley & Sons.
- 12. Sharma J. K. (1989). *Mathematical Models in Operations Research*:Tata McGraw Hill PublishingCo. Ltd.
- 13. Sharma J.K. (2001). Quantitative Techniques for Managerial Decisions: MacMillan India Ltd.
- 14. Sharma S.D. *Operations Research*. Eleventh Edition: KedarNath Ram Nath& Company.
- 15. TahaH. A.(2010). Operations Research. Ninth Edition: Prentice Hall of India.
- 16. Wagner H. M. (1970). Principles of Operations Research with Applications to Management Decisions, Second Edition: Prentice Hall of India Ltd.